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Abstract
A non-Hermitian Hamiltonian that has an unbroken PT symmetry can be
converted by means of a similarity transformation to a physically equivalent
Hermitian Hamiltonian. This raises the following question: in which form of
the quantum theory, the non-Hermitian or the Hermitian one, is it easier to
perform calculations? This paper compares both forms of a non-Hermitian ix3

quantum-mechanical Hamiltonian and demonstrates that it is much harder to
perform calculations in the Hermitian theory because the perturbation series
for the Hermitian Hamiltonian is constructed from divergent Feynman graphs.
For the Hermitian version of the theory, dimensional continuation is used to
regulate the divergent graphs that contribute to the ground-state energy and
the one-point Green’s function. The results that are obtained are identical to
those found much more simply and without divergences in the non-Hermitian
PT -symmetric Hamiltonian. The O(g4) contribution to the ground-state
energy of the Hermitian version of the theory involves graphs with overlapping
divergences, and these graphs are extremely difficult to regulate. In contrast,
the graphs for the non-Hermitian version of the theory are finite to all orders
and they are very easy to evaluate.

PACS numbers: 11.30.Er, 11.25.Db, 02.30.Mv, 11.10.Gh

1. Introduction

In 1998, it was shown using perturbative and numerical arguments that the non-Hermitian
Hamiltonians

H = p2 + x2(ix)ε (ε � 0) (1)
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have real positive spectra [1, 2]. It was argued in these papers that the reality of the spectrum
was due to the unbroken PT symmetry of the Hamiltonians. A rigorous proof of reality was
given by Dorey et al [3].

Later, in 2002 it was shown that the Hamiltonian in (1) describes unitary time evolution
[4]. In [4], it was demonstrated that it is possible to construct a new operator called C that
commutes with the Hamiltonian H. It was shown that the Hilbert space inner product with
respect to the CPT adjoint has a positive norm and that the time evolution operator eiHt is
unitary. Evidently, Dirac Hermiticity of the Hamiltonian is not a necessary requirement of
a quantum theory; unbroken PT symmetry is sufficient to guarantee that the spectrum of H
is real and positive and that the time evolution is unitary. (In this paper, we indicate that a
Hamiltonian is Hermitian in the Dirac sense by writing H = H †, where the symbol † indicates
Dirac Hermitian conjugation, that is, the combined operations of complex conjugation and
matrix transposition: H † ≡ H ∗T.)

A recipe for constructing C was given in [5]. The procedure is to solve the three
simultaneous algebraic equations satisfied by C:

C2 = 1, [C,PT ] = 0, [C,H ] = 0. (2)

The recipe in [5] has been used to find the C operator for various quantum field theories
[6–8]. This recipe produces the C operator as a product of the exponential of an antisymmetric
Hermitian operator Q and the parity operator P:

C = eQP. (3)

As an example, we consider the PT -symmetric non-Hermitian Hamiltonian

H = 1
2p2 + 1

2x2 + ix. (4)

For this Hamiltonian, the exact Q operator is given by

Q = −2p. (5)

A natural question to ask is whether there is a Hamiltonian that is Hermitian in the Dirac
sense and is equivalent to a non-Hermitian PT -symmetric Hamiltonian H. Mostafazadeh
has shown that there is a Hermitian operator ρ that may be used to perform a similarity
transformation on H,

h = ρ−1Hρ, (6)

to produce a new Hamiltonian h that is Hermitian in the Dirac sense [9]. The operator ρ is
just the square root of the (positive) CP operator:

ρ = eQ/2. (7)

The Hamiltonian h that results from the similarity transformation (6) has been studied
perturbatively by Jones [10] and Mostafazadeh [11].

We summarize briefly the work in [10, 11]. One can verify that the Hamiltonian h
produced by the similarity transformation (6) is Hermitian by taking the Hermitian conjugate
of h:

h† = (e−Q/2H eQ/2)† = eQ/2H † e−Q/2. (8)

Next, one uses the PT symmetry of H to replace H † by PHP ,

h† = eQ/2PHP e−Q/2, (9)

and one uses the identity (3) to rewrite (9) as

h† = e−Q/2CHC eQ/2. (10)



PT -symmetric versus Hermitian formulations of quantum mechanics 1659

But C commutes with H, so

h† = e−Q/2H eQ/2 = h, (11)

which establishes the Hermiticity of h.
We illustrate this transformation by using the Hamiltonian (4). The similarity

transformation (11) using (5) gives

h = 1
2p2 + 1

2x2 + 1
2 , (12)

which is clearly Hermitian.
To see that H and h have the same spectra, one can multiply the eigenvalue equation for

H,H�n = En�n, on the left by e−Q/2:

e−Q/2H eQ/2 e−Q/2�n = En e−Q/2�n. (13)

Thus, the eigenvalue problem for h reads hφn = Enφn, where the eigenvectors φn are given
by φn ≡ e−Q/2�n. More generally, the association between states |A〉 in the Hilbert space for
the PT -symmetric theory and states |a〉 in the Hilbert space for the Hermitian theory is given
by

|a〉 = e−Q/2|A〉. (14)

The Hermitian theory whose dynamics is specified by h has the standard Dirac inner
product:

〈a|b〉 ≡ (|a〉)† · |b〉. (15)

However, the inner product for the non-Hermitian theory whose dynamics is governed by H
is the CPT inner product explained in [4]:

〈A|B〉CPT ≡ (CPT |A〉)T · |B〉. (16)

If |a〉 and |b〉 are related to |A〉 and |B〉 by |a〉 = e−Q/2|A〉 and |b〉 = e−Q/2|B〉 according to
(14), then the two inner products in (15) and (16) are identical. To show this, one can argue as
follows:

〈a| = (|a〉)† = (|a〉)∗T = (T |a〉)T = (T e−Q/2|A〉)T = (eQ/2T |A〉)T

= (e−Q/2 eQPPT |A〉)T = (e−Q/2CPT |A〉)T = (CPT |A〉)T eQ/2. (17)

Thus, 〈a|b〉 = 〈A|B〉CPT .
In this paper, we discuss the Hermitian Hamiltonian corresponding to the cubic non-

Hermitian PT -symmetric Hamiltonian

H = 1
2p2 + 1

2x2 + igx3. (18)

This is the quantum-mechanical analogue of the field-theoretic Hamiltonian density

H = 1
2 (∂ϕ)2 + 1

2m2ϕ2 + igϕ3, (19)

which is a non-Hermitian scalar quantum field theory that has appeared often in the literature.
This quantum field theory describes the Lee–Yang edge singularity [12] and arises in Reggeon
field theory [13]. The construction given in [5] of the C operator for this quantum field theory
demonstrates that this model is a physical unitary quantum theory and not an unrealistic
mathematical curiosity.

The question to be addressed in this paper is whether the Hermitian form of the
Hamiltonian (18) is more useful or less useful than the non-Hermitian form. To answer
this question, in section 2 we calculate the ground-state energy to order g2 using Feynman
graphical methods for both the Hermitian and the non-Hermitian versions of the theory. We
focus on graphical methods here because only graphical methods can be used as a perturbative
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approach in quantum field theory. We find that for the non-Hermitian version of the theory
the Feynman rules are simple and the calculation is utterly straightforward. In contrast, for
the Hermitian version of the theory the Feynman rules are significantly more complicated and
lead to divergent integrals that must be regulated. In section 3, we show how to calculate the
one-point Green’s function in both versions of the theory to order g3. Again, we encounter
divergent graphs in the Hermitian theory, and these graphs must be regulated to obtain the
correct answer. In section 4, we show that the Feynman rules in the Hermitian theory become
increasingly complicated as one goes to higher orders in perturbation theory. One is inevitably
led to very difficult divergent integrals that involve overlapping divergences. In contrast, the
calculation for the PT -symmetric version of the theory is extremely simple and only contains
finite graphs. We conclude in section 5 that the Hermitian version of the PT -symmetric theory
is impractical.

2. Calculation of the ground-state energy to order g2

The Schrödinger eigenvalue problem corresponding to the quantum-mechanical Hamiltonian
(18) is easy to solve perturbatively, and we can calculate the ground-state energy as a series in
powers of g2. The fourth-order result is

E0 = 1
2 + 11

8 g2 − 465
32 g4 + O(g6). (20)

However, our ultimate objective is to study PT -symmetric quantum field theories, and
therefore we need to construct Feynman-diagrammatic methods to solve for the Green’s
functions of the theory.

For any quantum field theory, the perturbation expansion of the ground-state energy is the
negative sum of the connected Feynman graphs having no external lines. To evaluate Feynman
graphs, we must first determine the Feynman rules, which are obtained from the Lagrangian.
Thus, we begin by constructing the Lagrangian corresponding to the Hamiltonian H in (18):

L = 1
2 (pẋ + ẋp) − H. (21)

Because the interaction term is local (it depends only on x and not on p), the formula for ẋ is
simple:

ẋ = p. (22)

Thus, we have

L = 1
2 ẋ2 − 1

2x2 − igx3. (23)

From (23) we read off the Euclidean Feynman rules: the three-point vertex amplitude is −6ig.
In coordinate space, a line connecting vertices at x and y is represented by 1

2 e−|x−y| and in
momentum space the line amplitude is 1

p2+1 . These Feynman rules are illustrated in figure 1.
In order g2 there are two connected graphs that contribute to the ground-state energy, and

these are shown in figure 2. The symmetry number for graph (a1) is 1
8 and the symmetry

number for graph (a2) is 1
12 . Both graphs have vertex factors of −36g2. The evaluation of

the Feynman integrals for (a1) and (a2) gives V/4 and V/12, respectively, where V = ∫
dx

is the volume of coordinate space. Thus, the sum of the graph amplitudes is − 11
8 g2V .

The contribution to the ground-state energy is the negative of this amplitude divided by V :
E2 = 11

8 g2, which easily reproduces the g2 term in (20).
We showed in section 1 that the energy levels of the Hermitian Hamiltonian h that

is obtained by means of the similarity transformation (6) are identical to those of H. Our
objective here is to recalculate the g2 term in the expansion of the ground-state energy in (20)
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vertex: −6ig

line:
x y

1
2
e−|x−y| (coordinate space)

p 1
p2+1

(momentum space)

Figure 1. Feynman rules for the Lagrangian (23). For this simple local trilinear interaction the
Feynman graphs are built from three-point vertices connected with lines. The line amplitudes in
both coordinate space and momentum space are shown.

(a1) SN = 1
8

(a2) SN = 1
12

Figure 2. The two connected vacuum graphs, labelled (a1) and (a2), contributing to the ground-
state energy of H in (18) to order g2. The symmetry numbers for each graph are indicated.

using the Feynman rules obtained from the transformed Hamiltonian h. The first step in this
calculation is to construct the operator Q, which is given in [5] as

Q = (− 4
3p3 − 2S1,2

)
g +

(
128
15 p5 + 40

3 S3,2 + 8S1,4 − 12p
)
g3 + O(g5), (24)

where the symbol Sm,n represents a totally symmetric combination of m factors of p and n
factors of x.

One can use (6) and (7) to construct h. The result given in [10, 11] is

h = 1
2p2 + 1

2x2 +
(

3
2x4 + 3S2,2 − 1

2

)
g2

+
(− 7

2x6 − 51
2 S2,4 − 36S4,2 + 2p6 + 15

2 x2 + 27p2
)
g4 + O(g6). (25)

In order to obtain the Feynman rules, we must now construct the corresponding Hermitian
Lagrangian �. To do so, we must replace the operator p with the operator ẋ by using the
formula

p = ẋ − 6g2s1,2, (26)

where sm,n represents a totally symmetric combination of m factors of ẋ and n factors of x.
The result for the Hermitian Lagrangian � is

� = 1
2 ẋ2 − 1

2x2 − (
3
2x4 + 3s2,2 − 1

2

)
g2

+
(

7
2x6 + 87

2 s2,4 + 36s4,2 − 2ẋ6 − 27
2 x2 − 27ẋ2

)
g4 + O(g6). (27)

From this Lagrangian, we can read off the Euclidean-space Feynman rules. Unlike the
PT version of the theory, increasingly many new vertices appear in every order of perturbation
theory. The three vertices to order g2 are shown in figure 3 and the six vertices to order g4

are shown in figure 4. Note that some of the lines emerging from the vertices have tick marks.
A tick mark indicates a derivative in coordinate space and a factor of ip in momentum space.
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−36g2

12g2

1
2
g2V

Figure 3. The three Euclidean-space vertices to order g2 for the Hermitian Lagrangian � in
(27). Note that the second vertex has tick marks on two of the legs. These tick marks indicate
coordinate-space derivatives that arise because of derivative coupling. Derivative coupling results
in divergent Feynman graphs.

54g4

−27g4

2520g4

−2088g4

1728g4

1440g4

Figure 4. The six Euclidean-space vertices to order g4 for the Hermitian Lagrangian � in (27).
Note that four of the vertices have tick marks on the legs. These tick marks indicate derivative
coupling.

(b1) SN = 1
8

(b2) SN = 1
4

(b3) SN = 1

Figure 5. The three graphs contributing to the ground-state energy of the Hermitian Lagrangian �

in (27) in order g2. Note that while graphs (b1) and (b3) are finite, the Feynman integral for graph
(b2) diverges and must be regulated to obtain a finite result.

The tick marks are a result of the derivative coupling terms in the Lagrangian �. As we will
see, the derivative coupling gives rise to divergent Feynman graphs.

We now use the Feynman rules in figure 3 to construct the vacuum graphs contributing
to the ground-state energy in order g2. These graphs are shown in figure 5. The simplest of
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these three graphs is (b3) because there is no Feynman integral to perform. This graph arises
from the constant term in � in (27). The value of this graph is simply 1

2g2V .
Graph (b1) has symmetry number 1

8 and vertex factor −36g2 and the Feynman integral
in momentum space is(∫ ∞

−∞

dp

2π

1

p2 + 1

)2

= 1

4
. (28)

The integrals associated with this graph are convergent. The value of graph (b1) is therefore
− 9

8g2V , where the factor of V comes from the translation invariance of the graph.
The interesting graph is (b2). The symmetry number is 1

4 , the vertex factor is 12g2 and
the Feynman integral in momentum space is∫ ∞

−∞

dp

2π

p2

p2 + 1

∫ ∞

−∞

dq

2π

1

q2 + 1
. (29)

The q integral is convergent and gives the value 1
2 . However, the p integral is divergent. We

therefore regulate it using dimensional continuation and represent its value as the limit as the
number of dimensions approaches 1:

lim
D→1

2
∫ ∞

0

rD−1dr

2π

r2

r2 + 1
= lim

D→1

	
(
1 + 1

2D
)
	

(− 1
2D

)
2π

= −1

2
. (30)

Hence, the value of graph (b2) is − 3
4g2V , where again the volume factor V comes from

translation invariance. Adding the three graphs (b1), (b2) and (b3), dividing by V and changing
the sign gives the result 11

8 g2, which reproduces the result in (20). This is a more difficult
calculation than that using the Feynman rules in figure 1 because we encounter a divergent
graph. It is most surprising to find a divergent graph in one-dimensional quantum field theory
(quantum mechanics). The infinite graph here is not associated with a renormalization of a
physical parameter in the Lagrangian. Rather, it is an artefact of the derivative coupling terms
that inevitably arise from the similarity transformation (6).

Here is a simple model that illustrates the use of dimensional continuation as a means of
regulating Feynman graphs: consider the quadratic Lagrangian

L = 1
2 ẋ2 − 1

2x2 − 1
2gẋ2. (31)

The corresponding Hamiltonian is

H = 1

2
p2 +

1

2
x2 +

g

2 − 2g
p2. (32)

The ground-state energy E0 for H in (32) is

E0 = 1
2 (1 − g)−1/2. (33)

The Euclidean Feynman rules for L in (31) are elementary. The amplitude for a line is given
in figure 1 and there is a two-tick two-point vertex with amplitude g. (This vertex has the
form of the first vertex shown in figure 4.) The graphs contributing to the ground-state energy
are all polygons. The nth-order graph has n vertices; its symmetry number is 1

2n
and its vertex

amplitude is gn. The total graphical contribution to the ground-state energy is

E0 − 1

2
= −

∞∑
n=1

gn

2n

∫ ∞

−∞

dp

2π

p2n

(p2 + 1)n
. (34)

Each of the integrals in (34) is divergent, but we regulate the integrals as in (30):

lim
D→1

2
∫ ∞

0

rD−1dr

2π

(
r2

r2 + 1

)n

= lim
D→1

	
(
n + 1

2D
)
	

(− 1
2D

)
2π(n − 1)!

= − 	
(
n + 1

2

)
π1/2(n − 1)!

. (35)
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(c1) × • SN = 1
2

(c2) × •
•
•

SN = 1
8

(c3) × • • SN = 1
4

(c4) × •
•

SN = 1
4

Figure 6. The Feynman graphs contributing to the one-point Green’s function G1 of the non-
Hermitian Hamiltonian H through order g3. Graph (c1) is of order g and graphs (c2)–(c4) are of
order g3.

Therefore, (34) becomes

E0 = 1

2

∞∑
n=0

gn
	

(
n + 1

2

)
π1/2n!

= 1

2
(1 − g)−1/2, (36)

which verifies the result in (33).
This dimensional-continuation procedure is effective because it extracts the correct finite

contribution from each of the divergent graphs. However, this procedure is much more difficult
to apply when there are graphs having overlapping divergences, as we shall see in section 4.

3. Calculation of the one-point Green’s function

The connection in (14) between states in the Hermitian and the non-Hermitian PT -symmetric
theories implies the following relation between an operator O in the non-Hermitian PT -
symmetric theory and the corresponding operator Õ in the Hermitian theory:

Õ = e−Q/2O eQ/2. (37)

Using this connection, we now calculate the one-point Green’s function G1 in both versions
of the theory to order g3. Again, we find that the calculation in the non-Hermitian theory is
extremely simple, but that in the Hermitian theory the calculation again involves divergent
graphs that must be regulated.

The graphs contributing to G1 = 〈0|x|0〉CPT through order g3 in the non-Hermitian theory
defined by H in (18) or, equivalently, L in (23) are shown in figure 6. Each of these graphs is
finite and is easily evaluated. The result is that

G1 = − 3
2 ig + 33

2 ig3 + O(g5). (38)

Next, we calculate the identical one-point Green’s function in the Hermitian theory. To
do so, we need to transform the field x to the corresponding field x̃ in the Hermitian theory
using (37)
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(d1)
x y

(d2)
x y

Figure 7. The two graphs contributing to the one-point Green’s function G1 in the Hermitian
theory to order g. Note that graph (d1) is finite, while graph (d2) diverges and must be regulated
to give a finite result.

(e1) •
x y

(e2)
x y

––

(e3)
x y

||

(e4)
x y

(e5)
x y

–

(e6)
x y

|

Figure 8. The six connected graphs contributing to the one-point Green’s function G1 for the
Hermitian theory to order g3. Graphs (e1), (e3) and (e4) are finite, but the remaining graphs are
divergent and must be regulated.

x̃ = e−Q/2x eQ/2

= x − i(x2 + 2p2)g + (2S2,1 − x3)g2 + i(20p4 + 24S2,2 + 5x4 − 6)g3 + O(g4)

= x − i(x2 + 2ẋ2)g + (2s2,1 − x3)g2 + i(20ẋ4 + 48s2,2 + 5x4 − 6)g3 + O(g4), (39)

where we have replaced p in favour of ẋ using (26). (This result may be found in [10, 11] to
order g2.)

Using (39), we can construct the graphs contributing to G1 to order g (see figure 7). Graph
(d1) is finite and has the value − 1

2 ig. However, graph (d2) is infinite and must be regulated
using dimensional continuation. The result is −ig. Combining these two graphs, we obtain
the term of order g in (38).

The calculation of G1 to order g3 in the Hermitian theory is much more complicated.
First, we must construct the six connected graphs arising from the expectation value of x̃

in (39) (see figure 8). Three of these graphs, (e1), (e3) and (e4), are finite. The remaining
graphs are divergent and must be regulated using dimensional continuation. There are four
more disconnected graphs arising from the expectation values of the terms 20ẋ4, 48s2,2, 5x4

and −6. Two of these graphs must also be regulated. Finally, combining the contributions
of these ten graphs, we successfully reproduce the O(g3) result 33

2 ig3 in (38). We emphasize
that the calculation for the Hermitian theory is orders of magnitude more difficult than the
corresponding calculation for the non-Hermitian PT -symmetric theory.

4. Higher order calculation of the ground-state energy

In this section, we extend the calculation of the ground-state energy that is described in
section 2 to next order in powers of g2. We will see that this calculation is completely
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(f1) SN = 1
16

(f2) SN = 1
16

(f3) • ••
•

SN = 1
48

(f4) •
•

••
SN = 1

8

(f5)

•

• SN = 1
24

Figure 9. The five vacuum graphs contributing to the ground-state energy of the non-Hermitian
PT -symmetric Hamiltonian H in (18) to order g4. These graphs are all finite and very easy to
evaluate.

straightforward in the non-Hermitian theory, while it is nearly impossible in the Hermitian
theory. We show that the difficulty is not just due to the arithmetic difficulty of sorting
through large numbers of graphs, but rather is one of principle. The problem is that we
encounter two graphs with overlapping divergences, and calculating the numerical values of
the corresponding regulated graphs remains an unsolved problem, even in one-dimensional
field theory (quantum mechanics)!

There are five graphs ( f 1)–( f 5) contributing in order g4 to the ground-state energy of the
non-Hermitian Hamiltonian H in (18). These are shown in figure 9. The symmetry numbers
for these graphs are indicated in the figure. The vertex factors for all these graphs are 1296g4.
The Feynman integrals for these graphs are 1

16V for ( f 1), 11
864V for ( f 2), 1

8V for ( f 3), 1
36V for

( f 4) and 1
96V for ( f 5). Thus, the sum of the graphs is 465

32 V . The negative of this amplitude
divided by V is E4 = − 465

32 g4. This reproduces the order g4 term in the perturbation expansion
for the ground-state energy in (20).

There are 17 graphs of order g4 contributing to the ground-state energy of the Hermitian
Hamiltonian (25). These graphs, along with their symmetry numbers, are shown in figure 10.
Seven of these graphs, (g1), (g3), (g7), (g8), (g10), (g11) and (g16) are finite and easy
to calculate. The Feynman integrals for the remaining graphs are all infinite and must be
regulated. Dimensional continuation can be readily implemented as in (30) except for the
graphs (g15) and (g17). These two graphs are extremely difficult to regulate because they
have overlapping divergences. It is most dismaying to find Feynman graphs having overlapping
divergences in one-dimensional quantum field theory! Since the g4 contribution to the ground-
state energy is given in (20), we can deduce that the sum of the regulated values of these two
graphs (multiplied by their respective symmetry numbers and vertex factors) must be 21

16g4V .
However, we are unable to find a simple way to obtain this result.
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(g1 ) SN = 1
2

SN = 1
2

(g2)

(g3) SN = 1
48

(g4) SN = 1
16

(g5) SN = 1
16

(g6) SN = 1
48

(g7) SN = 1
48

(g8) SN = 1
16

(g9) SN = 1
8

(g10) SN = 1
8

(g11 ) SN = 1
4

(g12) SN = 1
16

|

|

(g13) SN = 1
16

(g14) SN = 1
8

(g15) SN = 1
8

(g16) SN = 1
8

(g17) SN = 1
2

Figure 10. The 17 graphs contributing to the order g4 term in the perturbation expansion for the
ground-state energy of the Hermitian Hamiltonian h in (25). Note that ten of these graphs have
divergent Feynman integrals. Of these ten, eight are relatively easy to regulate using dimensional
continuation. However, graphs (g15) and (g17) have overlapping divergences and are therefore
extremely hard to evaluate.

5. Concluding remarks

This study was motivated by the concern that the mechanics of solving problems in quantum
field theory might not work in non-Hermitian theories. The usual techniques rely on the use of
the Schwinger action principle, the construction of functional integrals, and the identification
of and application of Feynman rules. These procedures are conventionally formulated in a
Hermitian setting. The surprise is that all of these standard techniques work perfectly in
a non-Hermitian context, but that they are much too difficult to apply if the non-Hermitian
theory is first transformed to the equivalent Hermitian one.



1668 C M Bender et al

We conclude by citing the comment of Jones in the second paper in [10] regarding
the critique of PT -symmetric theories in [14]. Jones writes, “Clearly, this [Eq. (25)] is
not a Hamiltonian that one would have contemplated in its own regard were it not derived
from [Eq. (18)]. It is for this reason that we disagree with the contention of Mostafazadeh
[14] that, ‘A consistent probabilistic PT -symmetric quantum theory is doomed to reduce
to ordinary quantum mechanics.’ ” Mostafazadeh appears to be correct in arguing that
a PT -symmetric theory can be transformed to a Hermitian theory by means of a similarity
transformation. However, we have demonstrated that the difficulties with the Hermitian theory
are severe and virtually insurmountable because this theory possesses a Feynman perturbation
expansion that becomes increasingly divergent as one goes to higher order. The divergences
are not removable by renormalization, but rather are due to increasingly singular derivative
interactions. In contrast, the non-Hermitian PT -symmetric theory is completely free from all
such difficulties.
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